Here's a small example of Singular Value Decomposition using Python:
from scipy import linalg, mat, dot;
matrix = mat( [[2,1,0,0], [4,3,0,0]] );
print "Original matrix:"
print matrix
U, s, V = linalg.svd( matrix )
print "U:"
print U
print "sigma:"
print s
print "VT:"
print V
dimensions = 1
rows,cols = matrix.shape
#Dimension reduction, build SIGMA'
for index in xrange(dimensions, rows):
s[index]=0
print "reduced sigma:"
print s
#Reconstruct MATRIX'
reconstructedMatrix= dot(dot(U,linalg.diagsvd(s,len(matrix),len(V))),V)
#Print transform
print "reconstructed:"
print reconstructedMatrix
This code prints the following:
Original matrix:
[[2 1 0 0]
[4 3 0 0]]
U:
[[-0.40455358 -0.9145143 ]
[-0.9145143 0.40455358]]
sigma:
[ 5.4649857 0.36596619]
VT:
[[-0.81741556 -0.57604844 0. 0. ]
[-0.57604844 0.81741556 0. 0. ]
[ 0. 0. 1. 0. ]
[ 0. 0. 0. 1. ]]
reduced sigma:
[ 5.4649857 0. ]
reconstructed:
[[ 1.80720735 1.27357371 0. 0. ]
[ 4.08528566 2.87897923 0. 0. ]]
And with one more dimension for sigma:
reduced sigma:
[ 5.4649857 0.36596619]
reconstructed:
[[ 2. 1. 0. 0.]
[ 4. 3. 0. 0.]]
This is how you can use Python for quick tests and experiments on SVD.
No comments:
Post a Comment